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Introduction
A study of transient natural convective flow and heat transfer in an odd-
shaped geometry is presented here. The geometry considered is a
combination of the horizontal and vertical enclosure shapes. Most of the
available literature on this topic concerns regular geometries such as
rectangular enclosures and cylindrical annuli (de Vahl Davis, 1983; Elder,
1965; Fu and Jou, 1991; Fu et al., 1989; Ostrach, 1988; Satya Sai et al., 1993;
Scozia and Frederick, 1991; Tabarrok and Lin, 1977; Yeung, 1989; Yin et al.,
1978), while actual applications demand the consideration of irregular shapes.
In particular, for applications involving the cooling of electronic equipment,
solar collectors, ingot castings, thermal hydraulic analysis of LMFBR etc., it is
often necessary to consider geometries such as the present one (Aung, 1991;
Betts et al., 1983; Vafai and Ettefagh, 1990).

Only a few studies have so far been reported which take into account the
irregularities in geometry. For instance, Evren-Selamet et al. (1992) studied
natural convection in a slot having the shape of a bottle. General irregular
geometries with differentially heated walls have been dealt with by Coulter and
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AR = aspect ratio
g = acceleration due to gravity
h = heat transfer coefficient
H = height
k = thermal conductivity
L = length
N = shape function
Nu = local Nusselt number
Nu
–––

= average Nusselt number = h Lref /k
p = pressure
Pr = Prandtl number = ν/α
Ra = Rayleigh number = g β ∆T L3

ref /α ν
T = temperature
u,v = velocities in x and y directions

Greek symbols

α = thermal diffusivity
β = coefficient of thermal expansion
ν = kinematic viscosity
ρ = density
τ = time
ψ = stream function

Subscripts 
D = lumped matrix
i = initial, ith node
j,k = jth and kth nodes
max = maximum
ref = reference

Superscripts
n = time level
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Guceri (1987). Campo et al. (1988) have analysed the natural convection in a
triangular enclosure using the Galerkin finite element method with stream
function – vorticity – temperature formulation.

Heat transfer between an inner body and the surrounding enclosure is
another important area which has received attention in recent years.
Warrington and Powe (1985) have experimentally analysed the natural
convection between concentrically located isothermal inner bodies of spherical,
cylindrical and cubical geometry and their cubical enclosures. The paper
concludes that the enclosure dimensions have a more significant effect on
temperature profile and heat transfer than the enclosure shape. Garg (1992)
investigated the natural convection heat transfer between concentric spheres
using the finite difference method. Arbitrary shaped inner bodies within an
enclosure have been considered by Glakpe and Asfaw (1991).

A majority of the existing studies on two dimensional rectangular enclosures
have considered only vertical or horizontal orientation of the cavity. In the
present study, the flow and heat transfer phenomena in a vertical enclosure with
a horizontal extension are analysed for various types of boundary conditions. A
detailed parametric study has been carried out to analyse the effects of
geometry, Rayleigh number and the nature of the prescribed boundary
conditions.

Problem definition and formulation
Natural convection in air, in the space between a hot inner body and its
enclosure, is considered (Figure 1 (a)). The air inside the enclosure is initially at
a uniform temperature Ti and is motionless. From this condition the inner wall
temperature is suddenly raised to Th and held constant thereafter. The outer
wall temperature is maintained at the initial value Ti while the other two sides
are insulated. The transient phenomena that follow the sudden imposition of
the inner wall boundary condition are studied. Apart from the main problem
defined here, a few variants with respect to the specification of boundary
conditions have also been considered.

After invoking the Boussinesq approximation, the non-dimensional
governing equations for two dimensional laminar flow and heat transfer are
given by:

Continuity equation

(1)

x – momentum equation

(2)
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y – momentum equation

(3)

energy equation

(4)

The scaling employed for the non-dimensional variables are:

(5)

where Lref is the characteristic dimension and in the present study it is the
height of the cavity.

In the above expressions the over-bar denotes a dimensional variable. The
boundary and initial conditions for the problem are (Figure 1(a)):

The non-dimensional parameters which have been varied in the study are the
width ratio (WR) and Rayleigh number (Ra). In order to investigate the effects of
boundary conditions, a problem with the following boundary condition is
considered.
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Solution procedure
The Galerkin finite element method using primitive variables of u, v, p and T
has been employed. For updating the pressure field with respect to time, the
continuity equation is converted into a Poisson equation for pressure through
the Eulerian velocity correction procedure (Nithiarasu et al., 1995; Ramaswamy,
1988; Ramaswamy et al., 1992). The cavity geometry is discretized to form a
numerical mesh, with the help of three node triangular elements. The velocity,
pressure and temperature variables within each element are expressed as

(6)

where Ni, Nj and Nk are the shape functions. The advection terms in each of the
governing equations have been discretized by the Adams Bashforth method
while diffusion terms have been handled using the Euler implicit scheme
(Nithiarasu et al., 1995; Ramaswamy, 1988; Ramaswamy et al., 1992). The
various steps employed for each time increment, in the semi-implicit scheme
applied to the weighted residual form of governing equations, are given below.

Step 1
Calculation of fictitious velocities from momentum equations without pressure
terms:

(7)

(8)

Step 2
Calculation of pressure from pressure Poisson equation:

(9)

Step 3
Velocity correction:

(10)

(11)

Step 4
Solution of energy equation:

(12)
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The entries of the matrices and vectors in the above equations are defined as

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

The time marching is continued until the nodal velocities, pressure and
temperature approach steady state within a specified difference in the value of
the variable between two successive time steps. The tolerance value has been
set as 10–7 for velocities and temperature, while it is 10–4 for pressure. The
dimensionless time steps have been selected in the range of 10–3 to 10–6, where
lower values are employed for high Ra and vice versa.

Results and discussion
In order to validate the numerical scheme employed here, results have been
predicted and compared against the benchmark results available in the
literature for natural convection in a square cavity. The boundary conditions
considered for the validation problem are those of differentially heated vertical
walls and insulated horizontal walls. The Nusselt number values for different
grid sizes are compared in Table I. This shows that the grid size of 41 × 41 is
quite adequate for carrying out the calculations. The comparison of present
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results with those available in literature (de Vahl Davis, 1983), are given in Table
II. The Ra range considered for the comparison is 104 to 106.

It is observed from the table that all quantities predicted (average Nusselt
number on the hot wall,

–––
Nu, maximum stream function |ψmax|, maximum

vertical velocity vmax, and the maximum Nusselt number Numax) are in good
agreement with the values in the literature. Minor differences observed in the
two sets of results may be attributed to the different choices of element shapes
and solution procedures. The numerical results of the reference paper cited here
have been obtained by the finite difference technique using rectangular mesh,
while triangular elements and the finite element solution procedure have been
employed in the present study.

After validating the numerical scheme, it was felt necessary to perform a
grid sensitivity analysis for the odd-shaped geometry considered. In order to
select a suitable numerical grid, results at a Rayleigh number of 106 have been
predicted using four different grids. Comparisons between the results obtained
for these three grids are given in Table III.

It is evident from the table that grid 3 with 1,440 nodes is quite adequate for
the problem considered. Therefore, grid 3 with non-uniform triangular elements
(Figure 1(b)) has been employed for all numerical predictions of the present
study.

Grid size 11 × 11 31 × 31 41 × 41
Average Nu 11.220 8.815 8.800

Table I.
Average Nusselt number
values along the hot wall

of square cavity, Ra = 106

Ra = 104 Ra = 105 Ra = 106

de Vahl Davies de Vahl Davies de Vahl Davies
Parameters Present (1983) Present (1983) Present (1983)

Nu
–––

2.245 2.238 4.521 4.509 8.800 8.817
|ψmax| 5.179 5.071 9.800 9.612 17.200 16.750
vmax 19.816 19.617 68.860 68.590 222.460 219.360
Numax 3.518 3.528 7.859 7.717 17.400 17.925

Table II.
Comparison of present

results with benchmark
solution (de Vahl Davis,

1983) on 41 × 41
non-uniform grid

Number of nodes
Parameters 800 (grid 1) 1,056 (grid 2) 1,440 (grid 3) 1,802 (grid 4)

Nu
–––

11.41 11.42 11.37 11.38
vmax 262.45 248.01 248.29 248.33
|ψmax| 21.29 20.10 20.12 20.12

Table III.
Grid selection for

Ra = 106, WR = 0.3



HFF
8,2

206

Flow and isothermal patterns
The stream line and isothermal patterns for different Rayleigh numbers and
Width ratios are shown in Figures 2, 3 and 4. These figures indicate a mixed
flow structure between that of a vertical and a horizontal enclosure. The effects
of such vortex flows upon the shapes of isotherms and wall heat transfer are
also illustrated. In all the cases, stream function is calculated by solving the
following vorticity equation.

(23)

In Figure 2 it is seen that the vertical vortex is predominant and it fills a
significant part of the horizontal extension also. The penetration of the vertical
vortex into the horizontal chamber is more, for smaller WR. A small
recirculatory vortex is observed at the bottom corner adjacent to the hot wall.
The size of this vortex increases as WR is reduced. As regards the isotherms,
these are almost parallel to isothermal walls indicating the predominance of
heat conduction at a low Ra of 103. It is noted that at the vertex of the inner
body, a high flux region develops owing to the clustering of stream lines as well
as isotherms.

For a Rayleigh number of 105 (Figure 3), it is observed that the flow pattern
in the horizontal part also exerts a significant influence, especially for larger

Figure 2.
Stream line (a) and
isothermal (b) patterns
for Ra = 103
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width ratios. With lower width ratios, the vertical flow is still able to enter
partly into the horizontal portion. Within the horizontal extension, the typical
cellular convection pattern is observed. The number of cells within unit length,
however, tends to increase for smaller WR. The isothermal patterns indicate
that conduction is predominant for lower width ratios, while convection effects
are significant at high width ratios. When convective effects are important
alternate spots of high and low flux are observed.

The features seen at Ra = 105 are further accentuated for the Rayleigh
number of 106 (Figure 4). The cellular pattern of the horizontal part becomes
predominant for low WR. As regards the isotherms, it is seen that convective
effects are significant for all WR values considered. The alternate spots of high
and low heat fluxes are observed more clearly, especially in the horizontal part.

Figure 5 shows the stream line and isothermal patterns for different L2/H2
ratios at Ra = 106. For the two different ratios considered, the patterns are
entirely different. In both the cases only two vortices are observed; one big
vortex in the vertical portion as in the cases with equal arm length and the
second vortex above the first one. In the second case, (L2/H2 = 0.4), the vortex
strength is a little less compared to the first case. The isotherms are more
densely packed near the hot wall corner for L2/H2 = 0.65 than for L2/H2 = 0.4.
This increases the heat transfer coefficient in the former case.

Figure 3.
Stream line (a) and

isothermal (b) patterns
for Ra = 105
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Figure 5.
Stream line (a) and
isothermal (b) patterns
for Ra = 106 at different
L2/H2 ratios
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Figure 4.
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Nusselt number variation
The local Nusselt number is calculated as Nu = ∂T/∂n and the average Nusselt
number is obtained by integrating the derivative over the wall length.

The local Nusselt number variation along the hot wall is shown in Figure 6
for different Rayleigh numbers and width ratios. It is seen that at low Rayleigh
numbers a sharp peak in the Nusselt number value occurs at the vertex of the
hot wall where the isotherms cluster near the corner (Figure 2). Also at low
Rayleigh numbers the Nusselt number is inversely proportional to the width of
the annulus as expected for the conduction dominated regime. At higher
Rayleigh numbers, owing to convection effects, fluctuations in Nu value are
observed indicating alternate spots of high and low heat flux. These
fluctuations are consistent with the cellular pattern observed for the situation
considered. 

In Figures 7 and 8 the local Nusselt number variation along the hot wall is
compared against the corresponding Nu variations for vertical and horizontal
rectangular cavities respectively. In Figure 7 it is seen that the Nu variation for
the odd-shaped cavity is quite similar to that for a vertical enclosure, especially
at higher Rayleigh numbers. At low Rayleigh numbers the Nusselt number
variation differs considerably from that for a vertical enclosure only around the
sharp corner. From Figure 8 it is seen that the peak values of Nu for the

Figure 6.
Local Nusselt number

variation along the hot
wall at different

Rayleigh numbers
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Figure 7.
Comparison of local
Nusselt number along
the hot vertical wall for
the present geometry
and a vertical cavity at
different Rayleigh
numbers
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Figure 8.
Comparison of local
Nusselt number along
the hot horizontal wall
for the present
geometry and a
horizontal cavity at
different Rayleigh
numbers
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odd-shaped and horizontal enclosures are of the same order at high Rayleigh
numbers. Moreover, the small shift in the location of peak Nu value is related to
the shift in the locations of cellular vortices inside the horizontal portion, in the
case of the odd-shaped geometry. This shift appears to be caused by penetration
of vertical flow vortex into the horizontal chamber. At low Rayleigh numbers,
the Nu variations are very similar except near the sharp corner. It can thus be
argued that the flow and isothermal solutions for a complex geometry may be
approximated in terms of vertical and horizontal sub-domains, with the sub-
domains being selected appropriately. Such a procedure could be very useful for
analysing the flow through complex passages in applications such as the
cooling of electronic equipment. This feature is illustrated in Table IV, showing
the average Nusselt number calculated for rectangular cavities of
vertical/horizontal orientations and sub-domains of L-shaped cavity with
similar orientations.

Average Nusselt number variation for different L2/H2 ratios are presented in
Table V. The Nusselt number values are generally higher for the L-shaped
cavity compared to those of the rectangular cavity. For L2/H2 values lower than
unity, the Nusselt number in general increases.

Transient results
The transient variations of maximum Nu along both the walls and maximum
velocity component values within the cavity are shown in Figure 9. For the hot
wall the Nu is infinitely large initially owing to sudden imposition of the high
temperature boundary condition; on the other hand, Nu starts from zero for the
cold wall since Tc and Ti are equal. From the initial values, the Nusselt number
decreases for the hot wall and increases for the cold wall until constant values

Vertical portion of Horizontal portion of
the L-shaped Vertical the L-shaped Horizontal

SI number Ra cavity cavity cavity cavity

1 103 3.55 3.34 3.51 3.33
2 104 3.76 3.56 3.52 3.34
3 105 6.62 6.27 4.80 4.44
4 106 12.31 12.33 10.55 10.72

Table IV.
Comparison of average
Nusselt number values

for vertical and
horizontal sub-domains
and rectangular cavities

Rectangular
SI number Ra L2/H2 = 1 L2/H2 = 0.65 L2/H2 = 0.4 AR = 1.33

1 103 3.58 3.76 3.80 3.33
2 104 3.59 3.80 3.87 3.38
3 105 5.63 6.01 6.05 4.93
4 106 11.37 12.34 11.78 9.69

Table V.
Comparison of average
Nusselt number values

for different L2/H2 ratios



are reached at steady state. At steady state, the average Nusselt number on the
hot wall is higher than that of the cold wall because of the smaller surface area
of the hot wall. At higher Rayleigh numbers, the initial transients in Nusselt
number variation are much faster owing to higher velocity values encountered
adjacent to the wall (see Figure 9). As regards the dimensionless velocities, their
magnitudes are small at low Ra and high at higher Rayleigh numbers, as
expected. For high Ra it is observed that an initial peak is reached which is
greater than the steady state maximum value. The reason for this is that after
the sudden imposition of the hot wall temperature the velocity in the vicinity of
this wall shoots up rapidly owing to the occurrence of a thin convective layer.
For later times, as convection effects penetrate throughout the cavity, the
maximum velocity drops to a lower value.

Effects of boundary conditions
In order to investigate the effects of prescribed boundary conditions on the flow
pattern and heat transfer phenomena, the prescribed temperature and adiabatic
wall boundary conditions have been modified as discussed in the section

Figure 9.
(a) average Nusselt
number variation with
respect to time along the
hot and cold walls at
different Rayleigh
numbers; (b) maximum
vertical and horizontal
velocities with respect
to time at different
Rayleigh numbers
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“Problem definition and formulation” and the results are presented in Figure 10.
It is seen that a single vortex fills the entire space in this situation, except near
the corners where small recirculating eddies with opposite sense of rotation are
present. The isothermal patterns for this case are also quite different from those
of the earlier problem studied.

If Figure 11, 12, 13, the flow and heat transfer phenomena are depicted at a
higher Rayleigh number (Ra = 106) for the problem with modified interchanged
conditions. In these figures it is observed that the natural convective flow does
not reach steady state: rather, it has an oscillatory behaviour with counter
rotating vortices originating periodically at the hot wall (bottom), which drift

Figure 10.
Flow (a) and isothermal
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interchanged boundary
conditions at Ra = 105

and WR = 0.3
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upwards and merge with the vortex of the horizontal portion. The
corresponding isotherms (Figure 12) also indicate a cyclic variation with
respect to time. The average Nusselt number along the hot wall also fluctuates
periodically with time (Figure 13). These figures indicate that a steady state
solution may not even exist for certain types of boundary conditions, for the
geometry considered in the problem.

In Figure 14 a circular shaped hot inner body has been considered with the
same boundary conditions as in Figure 1, at a Rayleigh number of 105. In this
case it is seen that the vertical vortex is more predominant than the situation
with rectangular inner body. The isothermal pattern is also quite different. This
figure shows that the horizontal and vertical sub-domain approach discussed
earlier could be applied only for regions where the inner and outer surfaces are
parallel to each other.

Figure 12.
Transient isothermal
patterns for
interchanged boundary
conditions at Ra = 106

and WR = 0.3
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Conclusions
This study illustrates that a complex annular space with parallel opposite walls
could be broken into several horizontal or vertical enclosures for the purpose of
natural convective heat transfer analysis. It is also established that the nature of
heat transfer changes with width ratio and Rayleigh number, for certain types
of boundary conditions, steady states do not exist and oscillatory flow
conditions are seen to prevail.
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